

OVERVIEW OF THE Cris SDR: S-NPP AND NOAA-20

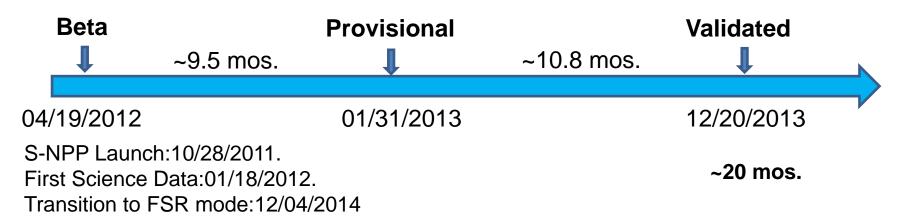
Flavio Iturbide-Sanchez, NOAA/NESDIS/STAR

CrIS SDR Team Lead

On behalf of the CrIS SDR Team

Outline

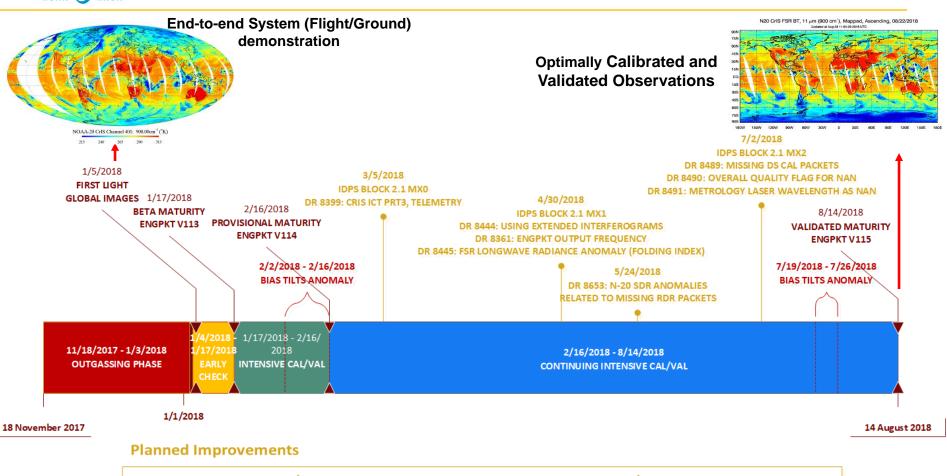
- Cal/Val Team Members
- Sensor/Algorithm Overview
- S-NPP/N-20 CrIS SDR Performance
- Major Risks/Issues and Mitigation
- Milestones and Deliverables
- Future Plans/Improvements
- Summary


Team Members

PI	Organization
Flavio Iturbide-Sanchez	NOAA/STAR (Contractors: Yong Chen, Denis Tremblay, Likun Wang and Adrew Wald)
Dave Tobin	U. of Wisconsin (UW)
Larrabee Strow	U. of Maryland Baltimore County (UMBC)
Deron Scott	Space Dynamics Lab (SDL)
Dan Mooney	MIT/LL
Dave Johnson	NASA Langley
Lawrence Suwinski	Harris
Joe Predina	Logistikos
Deirdre Bolen	JPSS/JAM

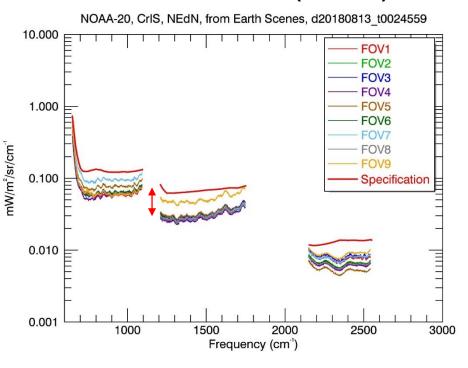
CrIS SDR Maturity Level Timeline

S-NPP CrIS SDR

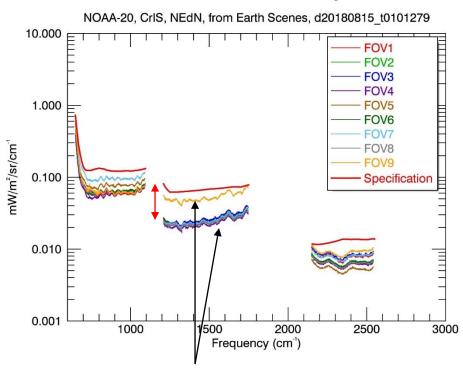


NOAA-20 CrIS SDR

NOAA-20 CrIS Major Events and Milestones



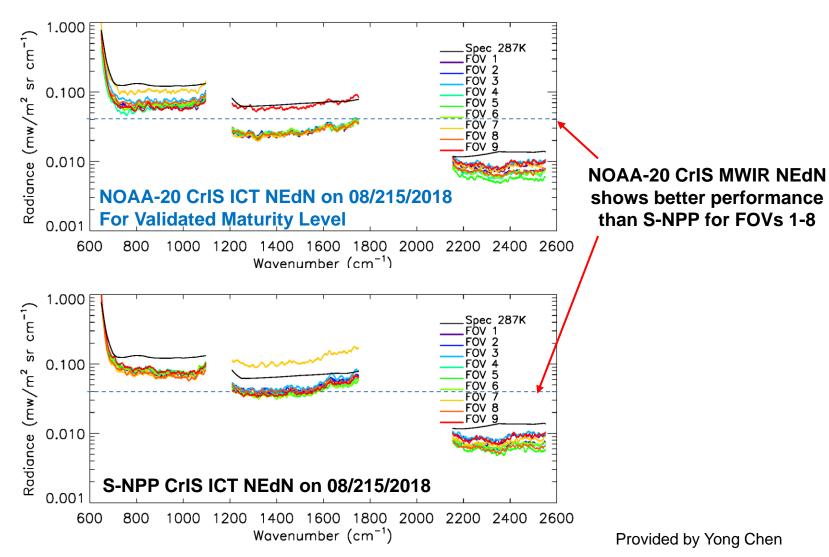
Provided by Yong Chen



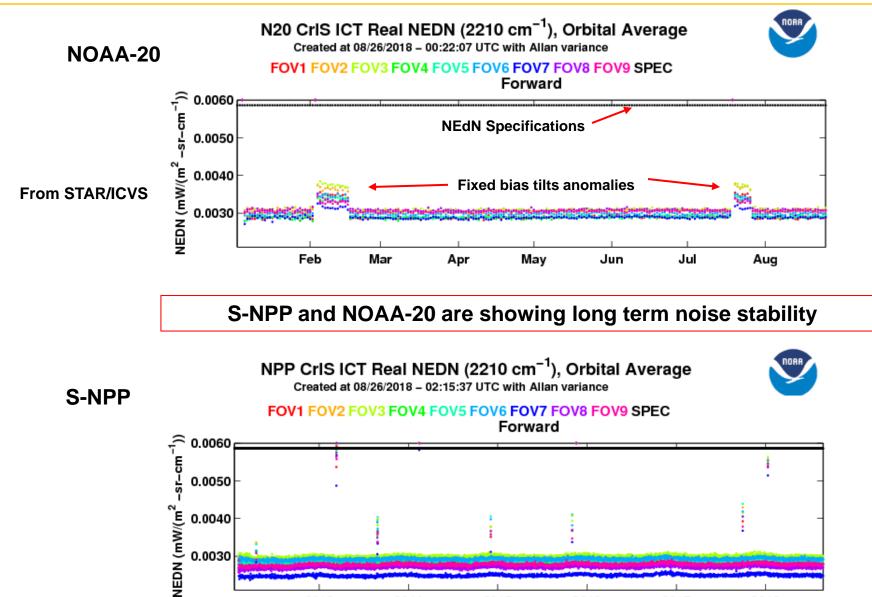
NOAA-20 CrIS NEdN: After EP v115 Upload on Aug 14, 2018

NEdN on 8/13/2018 (EP v114)

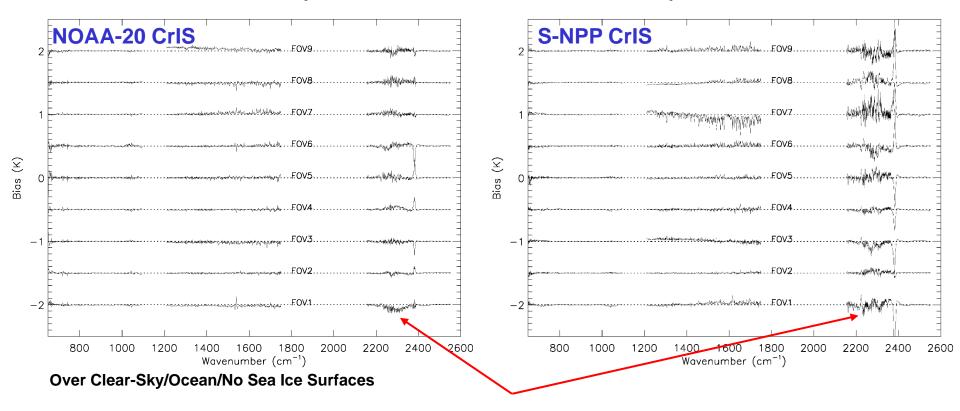
NEdN on 8/15/2018 (EP v115) For Validated Maturity Level


- MWIR NEdN has decreased ~15% due to PGA gain increase (FOV9 stays the same due to no gain change).
- All FOVs are below the specification.

Provided by Denis Tremblay

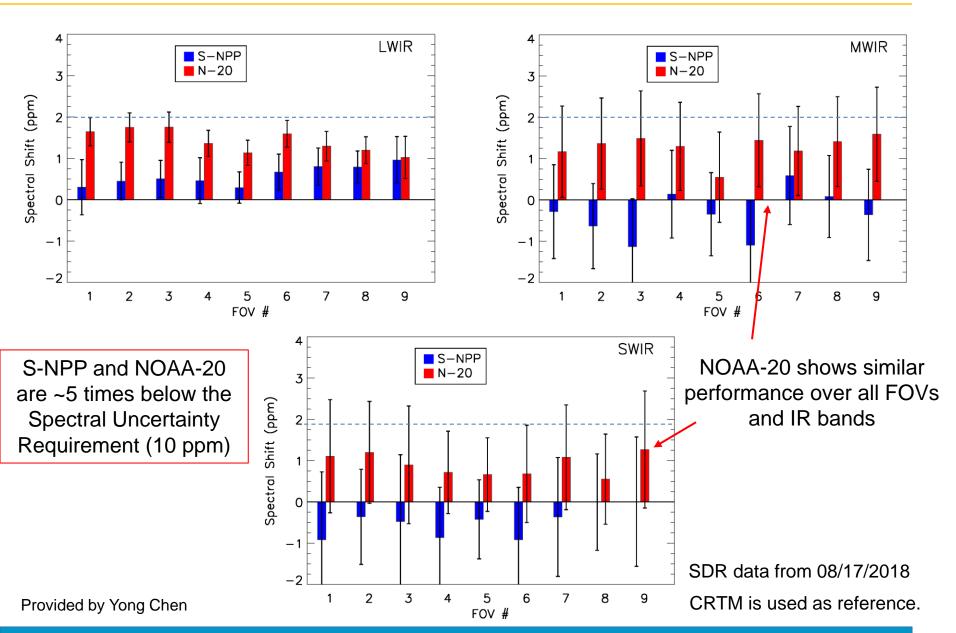

NEdN Performance: S-NPP vs NOAA-20

S-NPP and NOAA-20 are meeting the NEdN specifications (except NPP FOV7)


Noise Performance Trending: S-NPP and NOAA-20

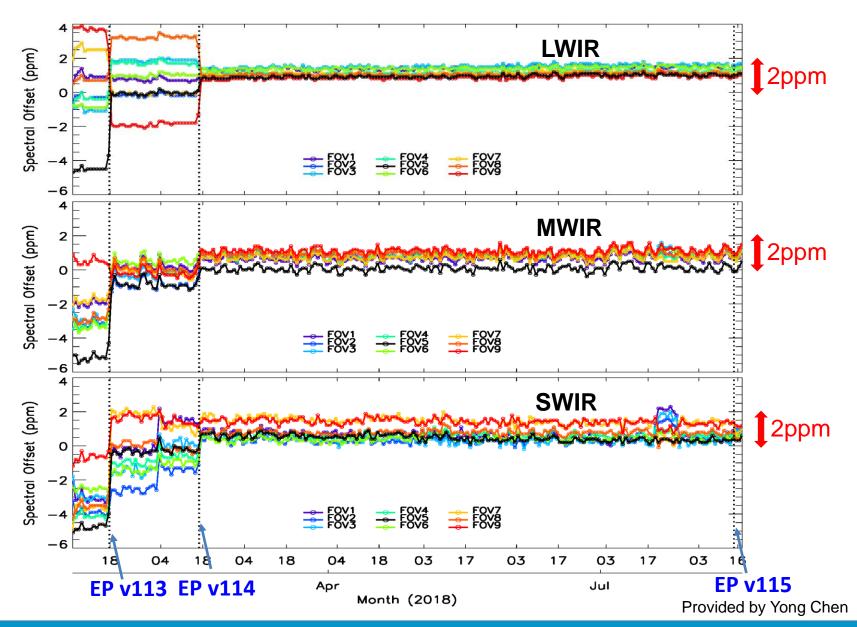
FOV-to-FOV Radiometric Consistency

Mean Difference of Observed and Simulated (CRTM) Hamming Apodized Spectra (removed O-B bias for each FOV)

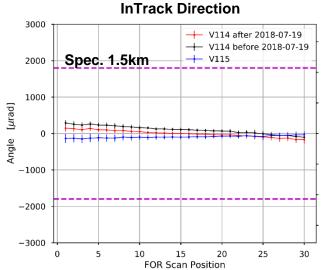


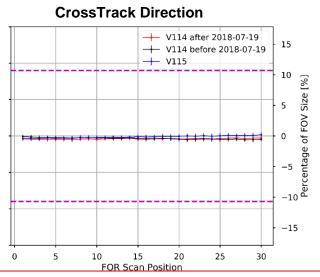
NOAA-20 shows better FOV2FOV Radiometric Consistency than SNPP for MW and SW bands mainly associate to better detectors linearity characteristics

Uniformity of FOV-to-FOV radiometric and spectral performances allows the assimilation of all FOVs without special treatment for particular FOVs

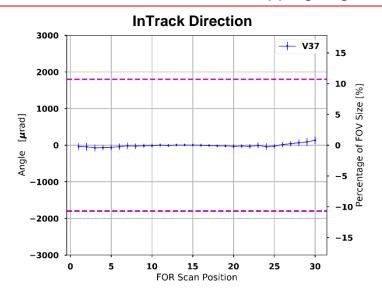


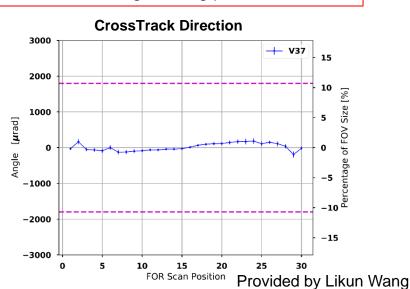
Absolute Spectral Accuracy: S-NPP and NOAA-20


NOAA-20 Spectral Calibration: Absolute Accuracy Trending

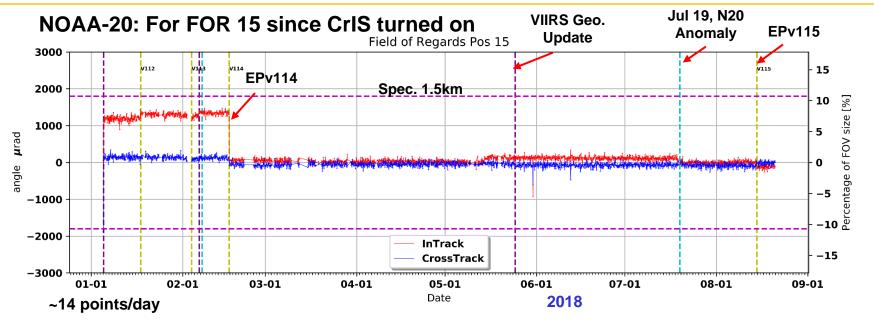


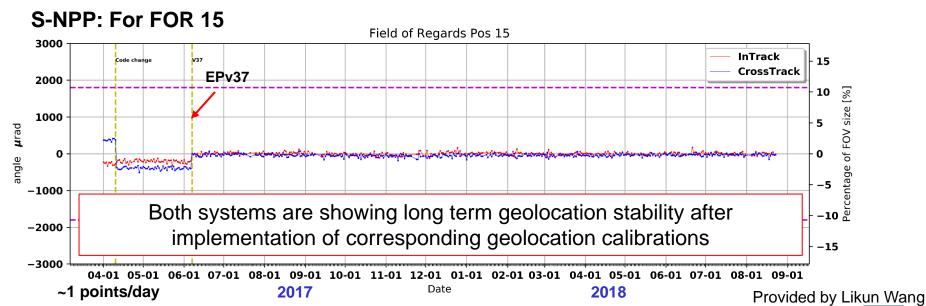
Geolocation Uncertainty: S-NPP and NOAA-20

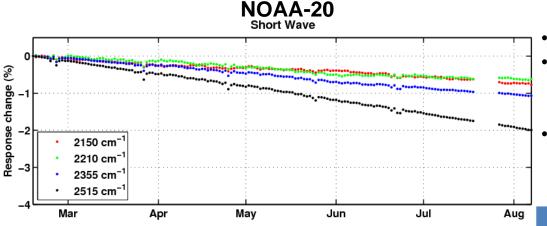


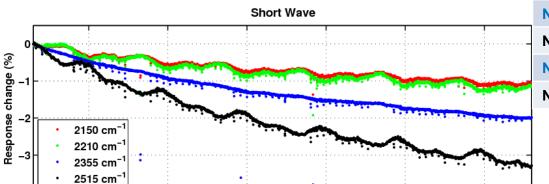


NOAA-20 shows better geolocation uncertainty due to an improvement performed in the method to derived the mapping angles defined in the engineering packet


S-NPP




Geolocation Uncertainty Trending: S-NPP and NOAA-20


CrIS Responsivity (Gain): S-NPP and NOAA-20

- These changes are calibrated out.
- Interesting to know if other NOAA-20 instruments experiencing similar are responsivity degradation.
- •This could be related to contamination (molecular, particulate) of the optical surface.

		Band	(cm ⁻¹)	(%)	(months)
		N20/SW	2515	-2%	6
NPP	NPP/SW	2515	-2%	26	
Short Wave		N20 /MW	1710	-1%	3.5
		NPP/MW	1710	-1%	54
		N20 /LW	1050	-0.4%	6
		NPP/LW	1050	-0.4%	24
50 cm ⁻¹	Manager Co. Co.				

- •Recommend to monitor the responsivity performance.
- A gain change of 50% caused a 15% change in MW NEdN.
- An initial estimate of a 6% increase in NEdN could be expected in 5 years for SW.

2016

2015

From STAR/ICVS

2013

2014

2018

2017

CrIS SDR Performance: S-NPP and NOAA-20

NOAA-20 CrIS FSR SDR uncertainties (blue) vs. specifications (black)

Band	Spectral Range (cm ⁻¹)	Resolution (cm ⁻¹)	Number of Channels	NEdN* (mW/m²/sr/cm ⁻¹)	Frequency Uncertainty (ppm)	Geolocation Uncertainty** (km)
LWIR	650-1095	0.625	713	0.086 (0.14)	2 (10)	0.22 (1.5)
MWIR	1210-1750	0.625	865	0.0315 (0.084)	2 (10)	0.22 (1.5)
SWIR	2155-2550	0.625	633	0.00766 (0.014)	2 (10)	0.22 (1.5)

^{*} Mean value averaged over 9 FOVs and over all band.

S-NPP CrIS FSR SDR uncertainties (blue) vs. specifications (black)

Band	Spectral Range (cm ⁻¹)	Resolution (cm ⁻¹)	Number of Channels	NEdN (mW/m²/sr/cm ⁻¹)	Frequency Uncertainty (ppm)	Geolocation Uncertainty** (km)
LWIR	650-1095	0.625	713	0.101 (0.14)	2 (10)	0.25 (1.5)
MWIR	1210-1750	0.625	865	0.0522 (0.084)	2 (10)	0.25 (1.5)
SWIR	2155-2550	0.625	633	0.00741 (0.014)	2 (10)	0.25 (1.5)

^{**} Using worst case within 30° scan angles.

CrIS SDR Team Milestones (FY18)

- Successfully achieved the NOAA-20 CrIS SDR products Beta, Provisional Maturity milestones, working toward reaching the Validated Maturity Level.
- Successfully and reliably produced NOAA-20 CrIS SDR products in both nominal and full spectral resolution in IDPS operational system.
- Made significant progress and delivered code for 1)
 Interferogram Spike Detection and Correction and 2) Lunar Intrusion Algorithm.
- Improved SDR calibration by using extended interferogram data points.
- Addressed all NOAA-20 and S-NPP CrIS anomaly events.
- Performed and discussed a trade study about reducing the CrIS field of view size from 14 km to 7 km.

CrIS SDR Team Future Plans and Improvements

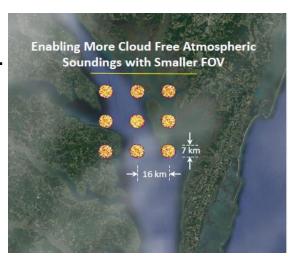
- Implement a CrIS polarization correction algorithm.
- Prepare for the J2/CrIS TVAC activities.
- Implement future improvements in the CrIS SDR Calibration Algorithm and perform proper integration into the ADL Builder.
- Enhance the radiometric, spectral and geolocation validations of the S-NPP and NOAA-20 CrIS SDR.
 - The S-NPP CrIS is approaching 7-years of continued observations and requires performance monitoring.
- Support the STAR/ICVS to implement new and improved capabilities for the LTM of S-NPP/NOAA-20 CrIS.
- Look for new research activities and applications of the CrIS observations.

Users Feedback

Name	Organization	Application	User Feedback
			Positive Feedback
			The similar performance found between the
			AVTP and AVMP EDR products of NUCAPS S-
Nick Nally	STAR	Soundings	NPP and NOAA-20 is a testament to the
			comparable calibration accuracy of the CrIS
			and ATMS observations made by S-NPP and
			NOAA-20
lim lung/Androw	NCEP		Positive Feedback
Jim Jung/Andrew Collard			Initial quality of the CrIS data from NOAA-20
			is comparable with that from NPP

Summary

- The CrIS SDR Team has developed and demonstrated capabilities to support the Calibration, Validation and Monitoring of the S-NPP and NOAA-20 CrIS instruments, ensuring the quality of the CrIS SDR data.
- The NPP and NOAA-20 CrIS SDRs are meeting the requirements and are showing long term stability.
- No major risks have been identified for the NPP and NOAA-20 CrIS.
- Lessons learned from S-NPP have contribute to reach the Validated Level for NOAA-20 CrIS SDR in 7 months (3 times faster than S-NPP).
- The CrIS SDR Team is performing activities toward reaching Validated Maturity Level for NOAA-20 CrIS. Presented results show that NOAA-20 is meeting the requirements and is expecting August 14, 2018 as the effective date to achieved the Validate Maturity Level.
- The CrIS SDR Team is moving toward future higher spatial resolution IR hyperspertral observations by discussing the implementation of a 7 km CrIS FOV size for J4.



The CrIS SDR Side Meeting August 28, 2017 from 9:00AM to 3:00PM

Time	Topic Title	Presenter
9:00-9:15	CrIS Polarization Corrections and Radiometric Uncertainty Estimates	Joe Taylor
9:15-9:30	NOAA-20 Satellite Intercalibration: CrIS/AIRS/IASI SNOs and CrIS/CrIS Double Difference Comparisons	Bob Knutson
9:30-9:45	NOAA20 a2 Progression and Summary of UW Efforts/Issues	David Tobin
9:45-10:00	Suggestions for New Research for the CrIS SDR Team	Larrabee Strow/Howard Motteler
10:00-10:15	Toward NOAA-20 CrIS SDR Validated Maturity Status: Radiometric and Spectral Performances	Yong Chen
10:15-10:30	Break	
10:30-10:45	Inter-Comparison of SNPP and NOAA-20 CrIS Toward Long-term Consistent Data Records	Likun Wang
10:45-11:00	Status of the J2/CrIS Pre-environmental TVAC Test	Lawrence Suwinski
11:00-11:15	Feedbacks from the NUCAPS Team on the Use of SNPP and NOAA-20 SDRs	Antonia Gambacorta
11:15-11:45	Study on Reducing the CrIS FOV Size from 14 km to 7 km for Implementation on J3 & J4	Joe Predina
11:45-12:00	Investigation of Noise Impact of 7km FOV on Nonlinearity Estimate from Diagnostic Mode Data	Dave Tobin
12:00-13:00	Lunch	
13:00-13:15	CrIS On-Orbit Noise and Relative Responsivity Trending from both SNPP and NOAA20	Kori Moore
13:15-3:00	Open Discussion Session	

Discussing the FOV size reduction for J4:

- Small FOV approach shall be low risk, low cost for J4 implementation
- No optical design changes other than x2 field stop aperture reduction.
- Assess performance impacts associated with change.
- Cloud-free FOR Observations increases from 18% to 27%.

Provided by Joe Predina